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Why Determine Aerosol Chemical Composition?

• Sources and precursors

• Formation mechanisms

• Chemical evolution

• CCN properties

• Optical effects

• Health effects



Principle of the PILS Technique

• Aerosol particles are grown to super micron size
under supersaturation conditions created by
mixing sample air with steam; particles of 100
nm diameter are activated with a >90%
efficiency.

• The resulting super micron size liquid droplets
are collected by a single orifice jet impactor;
Dp(50) is ~1 µm.



Principle of the PILS Technique (continued)

• Liquid sample collected at the impactor surface is
transported to the IC’s with a constant carrier flow
(ca. 0.2 mL min-1)

• Samples are injected for analysis every 3 minutes,
which is the time required to elute the major ions.

• Sample integration time is governed by the carrier
flow rate and the sample loop size and was 120 s
during TexAqs 2000.



IC Analysis

• Cations, Na+, NH4
+, K+, and Ca2+, and anions,

Cl-, NO3
-, and SO4

2- were determined.

• The limit of detection, based on the IC analysis
(ca. 0.1 µM) and a sample air flow rate of 5.0 L
min-1, is ~0.1 µg m-3 for these ions.



Inlet Arrangement

• Isokinetic sampling at a 30 L min-1 flow rate.

• A 2.5 µm size cut achieved by a MOUDI
impactor.

• SO2, HNO3, and NH3 removed using two glass
annular denuders in series.



Schematic Diagram of the G1 PILS System
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The PILS-IC Deployed on the DOE G1 during TexAqs 2000



Frequency distributions of aerosol ionic concentrations
G1, TexAqs 2000
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Distribution of aerosol ion mass concentrations
G1, TexAqs 2000
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Ratios of [NH4] to 2x[SO4]+[NO3] as a function
of SO4 mass concentration in 4 quartiles
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Other aerosol measurements on board the G1

Number distribution in the range
from 3 nm to 700 nm

Twin Scanning Electrical Mobility
Sizer (TSEMS)

Number distribution in 15 bins
between 2 µm and 47 µm

Forward Scattering Spectrometer
Probe (FSSP)

Absorption coefficient at 565 nm
due to black carbon

Particle Soot Absorption
Photometer (PSAP)

Number distribution in 15 bins
between 0.1 µm and 3.0 µm

Passive Cavity Aerosol
Spectrometer Probe (pcasp)



Additional characterization of aerosols

§ Tentative ‘organic mass’ (an upper limit)

= total mass – total ion mass – black carbon

Surrogate
organic mass

§ Estimate of black carbon mass concentration with an
assumed σ value of 10 m2 g-1.

PSAP data

§ Integrated particle surface and volume concentrations

§ Estimate of total mass of the accumulation mode
particles with assumed densities (e.g., 1.7 g cm-3 for
(HN4)2SO4, and 1 g cm-3 for organics)

Pcasp data



Aerosol Organic Component Determination

• Typically by filter collection followed by EC/OC determination based
on the thermal optical reflectance technique

– Low time resolution (1 hr or longer)

– Positive interference by gaseous organic compounds

– Negative interference due to evaporative loss on filter medium

– EC/OC subject to operational definition arising from, e.g.,
charring of OC

– Uncertainty in the conversion factor from carbon to compound

• Large measurement uncertainties associated with the OC determination



Questions on aerosol mass, chemical composition, and
formation mechanisms

• How much does the inorganic ion mass account for total aerosol
mass?

• How much the black carbon and organic compounds contribute to
total aerosol mass?

• What relationships can be discerned among these components, and
what are their sources?

• Is there a size dependence of these components?

• Are there photochemical signals in these components?



Comparison of total aerosol ion mass and particle volume
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Comparison of total aerosol ion mass and particle volume
9/12/00
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Comparison of total ion concentration and total particle volume
9/6/00
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Contribution of ionic components to total aerosol mass
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Contribution of ionic components to total aerosol mass
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Relationships Among Aerosol Components
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Aerosol Chemical Composition Observed on 9/6/00
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Comparison of aerosol chemical composition
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Size Dependence of Aerosol Chemical Composition
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Aerosol mass loading as a function of photochemical age
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Relationships between aerosol mass and photochemical products
morning flight, 8/26/00
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Relationships between aerosol mass and photochemical products
afternoon flight, 8/26/00
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Relationships between aerosol mass and photochemical products
afternoon flight, 9/6/00
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Relationships between aerosol mass and photochemical products
morning flight, 9/7/00
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Dependence of aerosol mass on NOz

morning flight, 9/11/00
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Dependence of aerosol mass on NOz

morning flight, 9/12/00
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Conclusions

¥ Inorganic ions, black carbon, and surrogate organics  of fine aerosol
particles were determined on board the DOE G1during TexAqs 2000.

¥ NH4
+ and SO4

2- were the dominant ionic species; NO3
- was typically

small, < 0.5 mg m-3, with infrequent excursions reaching half as SO4
2-.

¥ The [NH4
+] to [NO3

-]+2[SO4
2-] molar ratio often exceeded unity,

suggesting the presence of other ionic species such as organic acids,
and that NH3 was in abundant supply.

¥ An organic aerosol event showed a mass maximum at ~0.4 m,
contrasting that at ~0.2 m observed during a sulfate aerosol event.

¥ The aerosol organic component correlated well with black carbon, and
contributed nearly equally to aerosol mass as the inorganic ions.

¥ Fine aerosol mass, both the inorganic and organic fractions, showed a
positive correlation with H2CO and NOz, suggesting a photochemical
source of aerosol precursors.


